TECHNICAL DATA SHEET

Nylon
(Polyamide)

The exceptional bearing and wear properties of Nylon make it one of the most widely used plastics in the world. Nylon is frequently used as a replacement for bronze, brass, aluminum, steel and other metals, as well as other plastics, wood, and rubber. Nylon (Polyamide) is the generic name for all long-chain fiber-forming polyamides with recurring amide groups. Polyamides (Nylon) comprise the largest family of engineering plastics with a very wide range of applications. The family of nylons consists of several different types. Nylon 6/6, nylon 6, nylon 6/10, nylon 6/12, nylon 11, nylon 12, and nylon 6-6/6 copolymer are the most common. Of these, nylon 6/6 and nylon 6 dominate the market. Nylons offer extremely good wear resistance, coupled with high tensile strength and modulus of elasticity. They also have high impact resistance, a high heat distortion temperature, and resist wear, abrasion, and vibration. In addition, nylons can withstand sustained contact with a wide variety of chemicals, alkalis, dilute acids or oxidizing agents.

Another important factor both economically and mechanically, is the relative light weight of nylon. Nylon is approximately 1/8 the weight of bronze, 1/7 the weight of cast iron, and 1/2 the weight of aluminum. This reduces both the inertial and static loads and eases the handling of large components during maintenance or replacement procedures.

Benefits
High tensile strength
Light weight
High modulus of elasticity
High impact resistance
Resistance wear, abrasion, and vibration
Chemical resistance to alkalis, dilute acids or oxidizing agents

Note- Nylon® is NOT moisture Resistant

Applications
Electrical connectors
Gear, slide, cams and bearings
Automotive
Sports & recreational equipment
Bearings
Rollers
Wheels & wear components
Semiconductor
Medical
Wear Pads
Noels
Bushings
Seals

SHAPES AVAILABLE

SEE NEXT PAGE FOR ADDITIONAL INFORMATION

NOTE: The information contained herein are typical values intended for reference and comparison purposes only. They should NOT be used as a basis for design specifications or quality control. Contact us for manufacturers’ complete material property datasheets. All values at 73°F (23°C) unless otherwise noted.
TYPICAL PROPERTIES of EXTRUDED NYLONS

<table>
<thead>
<tr>
<th>ASTM or UL test</th>
<th>Property</th>
<th>Nylon 6/6 Unfilled</th>
<th>Nylatron GS Moly-Filled 6/6</th>
<th>Nylon 6/6 30% Glass</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D792</td>
<td>Density (lb/in³) (g/cm³)</td>
<td>0.042 / 1.15</td>
<td>0.042 / 1.16</td>
<td>0.049 / 1.35</td>
</tr>
<tr>
<td></td>
<td>Water Absorption, 24 hrs (%) Saturation (%)</td>
<td>0.3 / 7.0</td>
<td>0.3 / 7.0</td>
<td>0.7 / 5.4</td>
</tr>
<tr>
<td>MECHANICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D638</td>
<td>Tensile Strength (psi)</td>
<td>11,500</td>
<td>12,500</td>
<td>27,000</td>
</tr>
<tr>
<td></td>
<td>Tensile Modulus (psi)</td>
<td>425,000</td>
<td>480,000</td>
<td>1,400,000</td>
</tr>
<tr>
<td>D638</td>
<td>Tensile Elongation at Break (%)</td>
<td>50</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>D790</td>
<td>Flexural Strength (psi)</td>
<td>15,000</td>
<td>17,000</td>
<td>39,000</td>
</tr>
<tr>
<td>D790</td>
<td>Flexural Modulus (psi)</td>
<td>450,000</td>
<td>460,000</td>
<td>1,200,000</td>
</tr>
<tr>
<td>D695</td>
<td>Compressive Strength (psi)</td>
<td>12,500</td>
<td>16,000</td>
<td>-</td>
</tr>
<tr>
<td>D695</td>
<td>Compressive Modulus (psi)</td>
<td>420,000</td>
<td>420,000</td>
<td>-</td>
</tr>
<tr>
<td>D785</td>
<td>Hardness, Rockwell R</td>
<td>M85 / R115</td>
<td>M85 / R115</td>
<td>M101</td>
</tr>
<tr>
<td>D256</td>
<td>IZOD Notched Impact (ft-lb/in)</td>
<td>0.6</td>
<td>0.5</td>
<td>2.1</td>
</tr>
<tr>
<td>THERMAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D696</td>
<td>Coefficient of Linear Thermal Expansion (x 10⁻⁵ in./in./°F)</td>
<td>5.5</td>
<td>4.0</td>
<td>1.2</td>
</tr>
<tr>
<td>D648</td>
<td>Heat Deflection Temp (°F / °C) at 264 psi</td>
<td>200 / 93</td>
<td>200 / 93</td>
<td>482 / 250</td>
</tr>
<tr>
<td>D3418</td>
<td>Melting Temperature (°F / °C)</td>
<td>500 / 260</td>
<td>500 / 260</td>
<td>491 / 255</td>
</tr>
<tr>
<td></td>
<td>Max Operating Temp (°F / °C)</td>
<td>210 / 99</td>
<td>220 / 104</td>
<td>230 / 110</td>
</tr>
<tr>
<td>C177</td>
<td>Thermal Conductivity (BTU-in/ft²-hr-°F) (x 10⁻⁴ cal/cm-sec-°C)</td>
<td>1.7 / 5.9</td>
<td>1.7 / 5.9</td>
<td>1.7 / 5.9</td>
</tr>
<tr>
<td>UL94</td>
<td>Flammability Rating</td>
<td>V-2</td>
<td>V-2</td>
<td>HB</td>
</tr>
<tr>
<td>ELECTRICAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D149</td>
<td>Dielectric Strength (V/mil) short time, 1/8" thick</td>
<td>400</td>
<td>350</td>
<td>530</td>
</tr>
<tr>
<td>D150</td>
<td>Dielectric Constant at 60 Hz</td>
<td>3.6</td>
<td>-</td>
<td>3.5</td>
</tr>
<tr>
<td>D150</td>
<td>Dissipation Factor at 60 Hz</td>
<td>0.02</td>
<td>-</td>
<td>0.02</td>
</tr>
<tr>
<td>D257</td>
<td>Volume Resistivity (ohm-cm) at 73°F, 50% RH</td>
<td>> 10¹³</td>
<td>> 10¹³</td>
<td>10¹⁵</td>
</tr>
</tbody>
</table>

NOTE: The information contained herein are typical values intended for reference and comparison purposes only. They should NOT be used as a basis for design specifications or quality control. Contact us for manufacturers’ complete material property datasheets. All values at 73°F (23°C) unless otherwise noted.

NYLATRON is a registered trademark of Quadrant Engineering Plastic Products.
TYPICAL PROPERTIES of CAST NYLONS

<table>
<thead>
<tr>
<th>ASTM or UL test</th>
<th>Property</th>
<th>Nylon 6 MC907,901 Unfilled</th>
<th>Nyloil Oil-Filled</th>
<th>Nylatron GSM Moly-Filled</th>
<th>Nylatron Blue Moly & Oil</th>
<th>Nylatron NSM Solid-Lube</th>
</tr>
</thead>
<tbody>
<tr>
<td>D792</td>
<td>Density (lb/in³) (g/cm³)</td>
<td>0.042 1.15</td>
<td>0.042 1.16</td>
<td>0.042 1.16</td>
<td>0.042 1.15</td>
<td>0.042 1.15</td>
</tr>
<tr>
<td>D570</td>
<td>Water Absorption, 24 hrs (%)</td>
<td>0.3 7.0</td>
<td>0.5 2.5</td>
<td>0.3 7.0</td>
<td>0.22 -</td>
<td>0.25 7.0</td>
</tr>
</tbody>
</table>

PHYSICAL

D638	Tensile Strength (psi)	12,000	10,000	10,500	10,000	11,000
D638	Tensile Modulus (psi)	400,000	425,000	400,000	500,000	410,000
D638	Tensile Elongation at Break (%)	20	50	30	35	20
D790	Flexural Strength (psi)	16,000	15,000	16,000	15,000	16,000
D790	Flexural Modulus (psi)	500,000	425,000	400,000	425,000	400,000
D695	Compressive Strength (psi)	15,000	13,000	14,000	13,000	14,000
D695	Compressive Modulus (psi)	400,000	325,000	400,000	425,000	400,000
D785	Hardness, Rockwell R	R115	R110	R110	R117	R110
D256	IZOD Notched Impact (ft-lb/in)	0.4	1.6	0.5	0.9	0.5

THERMAL

D696	Coefficient of Linear Thermal Expansion (x 10⁻⁵ in./in./°F)	3.5	3.5	3.5	5.9	5.0
D648	Heat Deflection Temp (°F / °C) at 264 psi	200 / 93	350 / 177	200 / 93	-	200 / 93
D3418	Melting Temperature (°F / °C)	420 / 215	450 / 232	420 / 215	420 / 215	420 / 215
-	Max Operating Temp (°F / °C)	200 / 93	230 / 110	200 / 93	200 / 93	200 / 93
C177	Thermal Conductivity (BTU-in/ft²-hr-°F) (x 10⁻⁴ cal/cm-sec-°C)	-	-	-	-	-
UL94	Flammability Rating	HB	-	HB	-	HB

ELECTRICAL

D149	Dielectric Strength (V/mil) short time, 1/8" thick	500	550	400	-	400
D150	Dielectric Constant at 60 Hz	3.7	3.7	3.7	-	-
D150	Dissipation Factor at 60 Hz	-	-	-	-	-
D257	Volume Resistivity (ohm-cm) at 73°F, 50% RH	> 10¹³	-	> 10¹³	> 10¹³	> 10¹³

NOTE: The information contained herein are typical values intended for reference and comparison purposes only. They should NOT be used as a basis for design specifications or quality control. Contact us for manufacturers’ complete material property datasheets. All values at 73°F (23°C) unless otherwise noted.